New Research on YBCO Superconductors
Author | : David M. Friedman |
Publisher | : Nova Publishers |
Total Pages | : 306 |
Release | : 2008 |
ISBN-10 | : 1604560843 |
ISBN-13 | : 9781604560848 |
Rating | : 4/5 (848 Downloads) |
Download or read book New Research on YBCO Superconductors written by David M. Friedman and published by Nova Publishers. This book was released on 2008 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense world-wide research, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such 'strongly correlated' solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. This Publication presents new research on yttrium barium copper oxide superconductors, often abbreviated YBCO, which is a chemical compound with the formula YBa2Cu3O7. This material, a famous 'high-temperature superconductor', achieved prominence because it was the first material to superconduct above the boiling point of nitrogen. All materials developed before YBCO became superconducting only at temperatures near the boiling points of liquid helium or liquid hydrogen (Tb = 20.1 K). The significance of the discovery of YBCO is the breakthrough in the refrigerant used to cool the material to below the critical temperature.