Neural Networks for Conditional Probability Estimation

Neural Networks for Conditional Probability Estimation
Author :
Publisher : Springer Science & Business Media
Total Pages : 280
Release :
ISBN-10 : 9781447108474
ISBN-13 : 1447108477
Rating : 4/5 (477 Downloads)

Book Synopsis Neural Networks for Conditional Probability Estimation by : Dirk Husmeier

Download or read book Neural Networks for Conditional Probability Estimation written by Dirk Husmeier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.


Neural Networks for Conditional Probability Estimation Related Books

Neural Networks for Conditional Probability Estimation
Language: en
Pages: 280
Authors: Dirk Husmeier
Categories: Computers
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is
Neural Networks for Pattern Recognition
Language: en
Pages: 501
Authors: Christopher M. Bishop
Categories: Computers
Type: BOOK - Published: 1995-11-23 - Publisher: Oxford University Press

DOWNLOAD EBOOK

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Par
Probability Density Estimation with Neural Networks and Its Application to Blind Signal Processing
Language: en
Pages: 390
Authors: Amir Sarajedini
Categories:
Type: BOOK - Published: 1998 - Publisher:

DOWNLOAD EBOOK

An Introduction to Causal Inference
Language: en
Pages: 0
Authors: Judea Pearl
Categories: Causation
Type: BOOK - Published: 2015 - Publisher: Createspace Independent Publishing Platform

DOWNLOAD EBOOK

This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical
Engineering Applications of Neural Networks
Language: en
Pages: 739
Authors: Giacomo Boracchi
Categories: Computers
Type: BOOK - Published: 2017-07-30 - Publisher: Springer

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, G