Computational Methods for Electron—Molecule Collisions

Computational Methods for Electron—Molecule Collisions
Author :
Publisher : Springer Science & Business Media
Total Pages : 374
Release :
ISBN-10 : 9781475797978
ISBN-13 : 1475797974
Rating : 4/5 (974 Downloads)

Book Synopsis Computational Methods for Electron—Molecule Collisions by : Franco A. Gianturco

Download or read book Computational Methods for Electron—Molecule Collisions written by Franco A. Gianturco and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.


Computational Methods for Electron—Molecule Collisions Related Books

Computational Methods for Electron—Molecule Collisions
Language: en
Pages: 374
Authors: Franco A. Gianturco
Categories: Science
Type: BOOK - Published: 2013-06-29 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electr
Electron-Molecule Collisions
Language: en
Pages: 578
Authors: Isao Shimamura
Categories: Science
Type: BOOK - Published: 2013-11-11 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds
Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces
Language: en
Pages: 311
Authors: Petr Carsky
Categories: Science
Type: BOOK - Published: 2016-04-19 - Publisher: CRC Press

DOWNLOAD EBOOK

Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications fro
Scattering, Two-Volume Set
Language: en
Pages: 1831
Authors: E. R. Pike
Categories: Science
Type: BOOK - Published: 2001-10-09 - Publisher: Elsevier

DOWNLOAD EBOOK

Scattering is the collision of two objects that results in a change of trajectory and energy. For example, in particle physics, such as electrons, photons, or n
Electron Correlation in Molecules – ab initio Beyond Gaussian Quantum Chemistry
Language: en
Pages: 441
Authors:
Categories: Science
Type: BOOK - Published: 2016-01-28 - Publisher: Academic Press

DOWNLOAD EBOOK

Electron Correlation in Molecules – ab initio Beyond Gaussian Quantum Chemistry presents a series of articles concerning important topics in quantum chemistry