Cauchy Problem for Differential Operators with Double Characteristics
Author | : Tatsuo Nishitani |
Publisher | : Springer |
Total Pages | : 215 |
Release | : 2017-11-24 |
ISBN-10 | : 9783319676128 |
ISBN-13 | : 3319676121 |
Rating | : 4/5 (121 Downloads) |
Download or read book Cauchy Problem for Differential Operators with Double Characteristics written by Tatsuo Nishitani and published by Springer. This book was released on 2017-11-24 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pμj and Pμj , where iμj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.