Understanding the Deformation Mechanisms in Ni-based Superalloys with Using Crystal Plasticity Finite Element Method

Understanding the Deformation Mechanisms in Ni-based Superalloys with Using Crystal Plasticity Finite Element Method
Author :
Publisher :
Total Pages : 89
Release :
ISBN-10 : OCLC:1198498985
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Understanding the Deformation Mechanisms in Ni-based Superalloys with Using Crystal Plasticity Finite Element Method by : Tianju Chen

Download or read book Understanding the Deformation Mechanisms in Ni-based Superalloys with Using Crystal Plasticity Finite Element Method written by Tianju Chen and published by . This book was released on 2020 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Ni-based superalloy is considered as a good candidate due to its excellent resistance to elevated temperature deformation for long term period application. Understanding the deformation and failure mechanisms of Ni-Based superalloys is very helpful for providing design guidelines for processing Ni-based superalloys. Experimental characterization indicates that the deformation mechanisms of Ni based superalloy is strongly microstructure dependent. Besides, damage transform from the void nucleation to the macro cracks by voids growth leading to the failure of the Ni-based superalloys are also showing strong microstructure sensitivity. Therefore, this work focuses on the prediction and comprehension of the deformation and void growth behavior in Ni based superalloy at different working conditions via crystal plasticity finite element modeling and simulation. Physically based crystal plasticity frameworks were developed for newly Ni-based superalloy Haynes 282. It was found that dislocation shearing through the precipitates were acting as the main contributor to the strength of Haynes 282 at room temperature and 815°C. Our analysis of the creeping behavior of Haynes 282 exhibited that resistance of general climb replaced by the resistance induced by the deposited climb dislocation density. In addition, in the study of void growth behavior, our simulation results demonstrated that as the main loading axis perpendicular to the grain boundary (GB), voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystals with twist GBs. And tilt GBs would promote the void grow into irregular shape"--Abstract, page iv.


Understanding the Deformation Mechanisms in Ni-based Superalloys with Using Crystal Plasticity Finite Element Method Related Books