Mathematics for Machine Learning

Mathematics for Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 9781108569323
ISBN-13 : 1108569323
Rating : 4/5 (323 Downloads)

Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Mathematics for Machine Learning Related Books

Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Lifelong Machine Learning, Second Edition
Language: en
Pages: 187
Authors: Zhiyuan Sun
Categories: Computers
Type: BOOK - Published: 2022-06-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge th
Optimization in Machine Learning and Applications
Language: en
Pages: 202
Authors: Anand J. Kulkarni
Categories: Technology & Engineering
Type: BOOK - Published: 2019-11-29 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It
Machine Learning Proceedings 1992
Language: en
Pages: 497
Authors: Peter Edwards
Categories: Computers
Type: BOOK - Published: 2014-06-28 - Publisher: Morgan Kaufmann

DOWNLOAD EBOOK

Machine Learning Proceedings 1992
Metaheuristics
Language: en
Pages: 625
Authors: El-Ghazali Talbi
Categories: Computers
Type: BOOK - Published: 2009-05-27 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms t