Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models
Author :
Publisher : John Wiley & Sons
Total Pages : 315
Release :
ISBN-10 : 9781118304037
ISBN-13 : 1118304039
Rating : 4/5 (039 Downloads)

Book Synopsis Bayesian Analysis of Stochastic Process Models by : David Insua

Download or read book Bayesian Analysis of Stochastic Process Models written by David Insua and published by John Wiley & Sons. This book was released on 2012-04-02 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.


Bayesian Analysis of Stochastic Process Models Related Books

Bayesian Analysis of Stochastic Process Models
Language: en
Pages: 315
Authors: David Insua
Categories: Mathematics
Type: BOOK - Published: 2012-04-02 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian
Bayesian Forecasting and Dynamic Models
Language: en
Pages: 720
Authors: Mike West
Categories: Mathematics
Type: BOOK - Published: 2013-06-29 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models
Bayesian Inference in Dynamic Econometric Models
Language: en
Pages: 370
Authors: Luc Bauwens
Categories: Business & Economics
Type: BOOK - Published: 2000-01-06 - Publisher: OUP Oxford

DOWNLOAD EBOOK

This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows
Bayesian Inference of State Space Models
Language: en
Pages: 503
Authors: Kostas Triantafyllopoulos
Categories: Mathematics
Type: BOOK - Published: 2021-11-12 - Publisher: Springer Nature

DOWNLOAD EBOOK

Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space
Markov Chain Monte Carlo
Language: en
Pages: 264
Authors: Dani Gamerman
Categories: Mathematics
Type: BOOK - Published: 1997-10-01 - Publisher: CRC Press

DOWNLOAD EBOOK

Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated acc