PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM

PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1255862620
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM by :

Download or read book PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM written by and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The Great Lakes of North America are the largest surface freshwater system in the world and many ecosystems, industries, and coastal processes are sensitive to the changes in their water levels. The recent changes in the Great Lakes climate and water levels have particularly highlighted the importance of water level prediction. The water levels of the Great Lakes are primarily governed by the net basin supplies (NBS) of each lake which are the sum of over-lake precipitation and basin runoff minus lake evaporation. Recent studies have utilized Regional Climate Models (RCMs) with a fully coupled one-dimensional (1D) lake model to predict the future NBS, and the Coordinated Great Lakes Regulating and Routing Model (CGLRRM) has been used to predict the future water levels. However, multiple studies have emphasized the need for a three-dimensional (3D) lake model to accurately simulate the Great Lakes water budget. Therefore, in this study, we used the Great Lakes-Atmosphere Regional Model (GLARM) along with the Large Basin Runoff Model (LBRM) and CGLRRM to predict the changes in NBS and water levels by the mid- and late twenty-first century. GLARM is a 3D regional climate modeling system for the Great Lakes region that is fully coupled to a 3D hydrodynamic lake and ice model. This is the first study to use such an advanced model for water level prediction in the Great Lakes. We found that both annual over-lake precipitation and basin runoff are most likely to increase into the future. We also found that annual lake evaporation is most likely to decrease in Lake Superior but increase in all the other lakes. We posit that the decreases in evaporation are due to decreased wind speed over the lakes and decreased difference between saturated and actual specific humidity over the lakes. Our predicted changes in the three components of NBS would lead to mostly increased NBS and water levels in the future. The ensemble average of our predicted water level changes for Lake Superior, Michigan-Huron, and Erie are +0.14 m, +0.37 m, and +0.23 m by the mid-twenty-first century, respectively, and +0.47 m, +1.29 m, and +0.80 m by the late twenty-first century, respectively. However, due to the multiple sources of uncertainties associated with climate modeling and predictions, the water level predictions from this study should not be viewed as exact predictions. These predictions are unique to our model configuration and methodology. Other studies can easily predict different water level changes through the use of different models and methodologies. Therefore, more predictions from advanced modeling systems like GLARM are needed to generate a consensus on future water level changes in the Great Lakes.


PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM Related Books

PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM
Language: en
Pages:
Authors:
Categories:
Type: BOOK - Published: 2021 - Publisher:

DOWNLOAD EBOOK

Abstract : The Great Lakes of North America are the largest surface freshwater system in the world and many ecosystems, industries, and coastal processes are se
THE GREAT LAKES CLIMATE ANALYSIS USING A TWO-WAY COUPLED 3-D GREAT LAKES -ATMOSPHERE REGIONAL MODEL WITH DATA ASSIMILATION METHODOLOGY
Language: en
Pages:
Authors:
Categories:
Type: BOOK - Published: 2019 - Publisher:

DOWNLOAD EBOOK

Abstract : The objective of this work is to provide the best estimation of physical state of the Great Lakes using the two-way coupled Great Lakes-Atmosphere Re
Potential Climate Change Effects on Great Lakes Hydrodynamics and Water Quality
Language: en
Pages: 236
Authors: David C. L. Lam
Categories: Technology & Engineering
Type: BOOK - Published: 1999-01-01 - Publisher: ASCE Publications

DOWNLOAD EBOOK

This report provides a state-of-the-art review of the climate change effects on lake hydrodynamics and water quality. Most of the engineering cases in this book
Reaffirmation of Large Biases in a Long-used Method for Projecting Changes in Great Lakes Water Levels in Climate Change Scenarios
Language: en
Pages: 23
Authors: Brent Melvin Lofgren
Categories: Water levels
Type: BOOK - Published: 2015 - Publisher:

DOWNLOAD EBOOK

A method for projecting the water levels of the Laurentian Great Lakes under scenarios of human-caused climate change, used almost to the exclusion of other met
Climate Change in the Upper Great Lakes Region
Language: en
Pages: 168
Authors: Peter J. Sousounis
Categories: Climatic changes
Type: BOOK - Published: 1998 - Publisher:

DOWNLOAD EBOOK