Geometry from Dynamics, Classical and Quantum

Geometry from Dynamics, Classical and Quantum
Author :
Publisher : Springer
Total Pages : 739
Release :
ISBN-10 : 9789401792202
ISBN-13 : 9401792208
Rating : 4/5 (208 Downloads)

Book Synopsis Geometry from Dynamics, Classical and Quantum by : José F. Cariñena

Download or read book Geometry from Dynamics, Classical and Quantum written by José F. Cariñena and published by Springer. This book was released on 2014-09-23 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.


Geometry from Dynamics, Classical and Quantum Related Books

Geometry from Dynamics, Classical and Quantum
Language: en
Pages: 739
Authors: José F. Cariñena
Categories: Science
Type: BOOK - Published: 2014-09-23 - Publisher: Springer

DOWNLOAD EBOOK

This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagra
Geometry and Dynamics of Groups and Spaces
Language: en
Pages: 759
Authors: Mikhail Kapranov
Categories: Mathematics
Type: BOOK - Published: 2008-03-05 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to
Geometric Dynamics
Language: en
Pages: 416
Authors: Constantin Udriște
Categories: Mathematics
Type: BOOK - Published: 2000 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The theme of this text is the philosophy that any particle flow generates a particle dynamics, in a suitable geometrical framework. It covers topics that includ
Lectures on Fractal Geometry and Dynamical Systems
Language: en
Pages: 334
Authors: Ya. B. Pesin
Categories: Mathematics
Type: BOOK - Published: 2009 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and
Geometry, Mechanics, and Dynamics
Language: en
Pages: 506
Authors: Dong Eui Chang
Categories: Mathematics
Type: BOOK - Published: 2015-04-16 - Publisher: Springer

DOWNLOAD EBOOK

This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very