Probabilistic Graphical Models

Probabilistic Graphical Models
Author :
Publisher : MIT Press
Total Pages : 1270
Release :
ISBN-10 : 9780262258357
ISBN-13 : 0262258358
Rating : 4/5 (358 Downloads)

Book Synopsis Probabilistic Graphical Models by : Daphne Koller

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.


Probabilistic Graphical Models Related Books

Probabilistic Graphical Models
Language: en
Pages: 1270
Authors: Daphne Koller
Categories: Computers
Type: BOOK - Published: 2009-07-31 - Publisher: MIT Press

DOWNLOAD EBOOK

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making deci
Probabilistic Graphical Models
Language: en
Pages: 370
Authors: Luis Enrique Sucar
Categories: Computers
Type: BOOK - Published: 2020-12-23 - Publisher: Springer Nature

DOWNLOAD EBOOK

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engi
Advances in Bayesian Networks
Language: en
Pages: 334
Authors: José A. Gámez
Categories: Mathematics
Type: BOOK - Published: 2013-06-29 - Publisher: Springer

DOWNLOAD EBOOK

In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within ar
Advances in Probabilistic Graphical Models
Language: en
Pages: 386
Authors: Peter Lucas
Categories: Mathematics
Type: BOOK - Published: 2007-06-12 - Publisher: Springer

DOWNLOAD EBOOK

This book brings together important topics of current research in probabilistic graphical modeling, learning from data and probabilistic inference. Coverage inc
Probabilistic Machine Learning
Language: en
Pages: 858
Authors: Kevin P. Murphy
Categories: Computers
Type: BOOK - Published: 2022-03-01 - Publisher: MIT Press

DOWNLOAD EBOOK

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This boo